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Abstract

This study shows that fitting errors of equity option implied volatility surfaces are
informative about limits of arbitrage. For each stock and day, we quantify the goodness of
fit between the observed implied volatilities of all available options and the corresponding
estimates from OptionMetrics’ smoothed volatility surface using root-mean-square errors.
In the cross-section of stocks, this error metric increases in idiosyncratic stock volatility
and several measures of option and stock illiquidity. Based on these insights, we propose
a measure for market-wide limits of arbitrage given by the value-weighted average of the
stock-specific fitting errors. This measure of volatility noise peaks during episodes of
market distress and exhibits sensible correlations to standard economic state variables
like the market return, the TED spread, or the VIX. It co-moves as well with both
the conceptually similar (treasury) noise measure proposed by Hu, Pan and Wang
(2013) and a mispricing measure based on covered interest rate parity deviations in FX
markets, but volatility noise still contains unique information. Confirming this view,
we find that among these measures only volatility noise constitutes a priced risk factor
in monthly returns of managed equity portfolios.
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1 Introduction

Arbitrage activities are a fundamental cornerstone of efficient financial markets. In a world

without frictions, arbitrageurs trade against arbitrarily small mispricings for the prospect of

a risk-free profit. These trades drive prices closer to their fundamentals, thereby increasing

market efficiency. But in practice, there exist numerous potential limits of arbitrage that

restrict informed agents from trading against misaligned prices. For example, it might not be

possible to construct a perfectly risk-free arbitrage portfolio, maybe due to the non-availability

of securities with the needed payout profile or the inability to adjust portfolio compositions in

continuous time. In addition, trading may be costly due to transaction costs or high capital

requirements. The literature on intermediary asset pricing1 highlights the important role of

the capital resources available to intermediaries like banks, dealers, and fund managers. These

market participants have the necessary expertise to run arbitrage strategies, and this ability

may be limited if they face capital constraints. Further, Shleifer and Vishny (1997) argue that

arbitrageurs are highly specialized, holding undiversified portfolios. Thus, both systematic

and idiosyncratic volatility matter to these arbitrageurs and may lead to a decline in arbitrage

activities. All these mechanisms result in a tight connection between the magnitudes of

mispricing and financial frictions.

In this study, we analyze the link between misaligned equity option prices and overall limits

of arbitrage. The option market is particularly suitable for this kind of study, as there are

many different options per stock available, sharing the same source of fundamental risk. Even

more important, equity options are written on a broad spectrum of different stocks. So, we

can exploit that in times of high frictions, stock-specific measures for option mispricing tend
1 See for example He and Krishnamurthy (2013); Chen, Joslin and Ni (2016); He, Kelly and Manela (2017).
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to peak simultaneously, for example due to an overall shortage of arbitrage capital that affects

the stock market as a whole. We therefore propose volatility noise as the value-weighted

average over the stock-specific fitting errors. This aggregation is a crucial aspect of our

approach, as we are able to eliminate idiosyncratic components, such that the resulting

measure is particularly informative about market-wide limits of arbitrage.

We quantify the stock-specific option mispricing on each trading day by comparing the

observed implied volatilities with benchmark volatilities derived from a smoothed volatility

surface. In the cross-section of stocks, these pricing errors increase in idiosyncratic volatility

and illiquidity of both the stock and the associated options. This result gives a first indication

about the close link between option price mismatches and limits of arbitrage. Consequently,

a time-series analysis shows that the resulting aggregate volatility noise measure is able to

identify periods of market distress. It peaks during NBER recessions, financial crises, and

salient macro-economic events. We find sensible correlations between volatility noise and

important economic state variables like the TED spread, the stock market return, the VIX,

and market liquidity, with particularly strong links to state variables of the equity market. In

addition, there is a close connection to the (treasury) noise measure proposed by Hu, Pan and

Wang (2013), which is defined as the root-mean-square error between yields of U.S. Treasury

bonds and a smooth yield curve. We also find high correlations to a measure for arbitrage

opportunities on the foreign exchange market, as introduced by Pasquariello (2014) and

Klingler (2016), which quantifies deviations from the covered interest rate parity (CIP). All

three measures are conceptually similar, but based on completely different markets, so their

high correlation indicates that the measures indeed all account for limits of arbitrage. Finally,

in a vector autoregressive analysis, we find that volatility noise Granger-causes treasury noise

without reverse causality, whereas we find mutual Granger-causality between volatility noise
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and the CIP measure.

These findings suggest that volatility noise contains unique information about limits of

arbitrage, especially for equity markets. As mispricing due to constrained arbitrageurs poses

an important source of risk, volatility noise as a measure of limits of arbitrage should carry a

risk premium in expected returns. We analyze monthly returns of equity mutual funds from

the Morningstar database to investigate this hypothesis. Fund managers may willingly choose

to take higher risks to beat their benchmark, and active management by itself may result in

an additional exposure to liquidity risk, which is of course an important dimension of the

limits of arbitrage (Dong, Feng and Sadka, 2013). Therefore, we expect to find pronounced

pricing effects of arbitrage risk in mutual funds. And indeed, running a monthly-rebalanced

portfolio sort on volatility noise betas, we find a significant long-short return of about 3.6%

per year. In addition, we find significant alphas for the Fama and French (1993) three-factor,

Carhart (1997) four-factor, and Fama and French (2015) five-factor model, so the premium

on volatility noise cannot be explained by these standard risk factors. The corresponding

analyses for treasury noise and the CIP measure yield no significant premium, which confirms

the intuition that volatility noise represents an additional source of risk in excess of the other

measures of limits of arbitrage.

Our paper contributes to the extensive literature on limits of arbitrage, which argues that

arbitrage activities may be prevented if markets are, for example, illiquid or volatile (see,

for example, Shleifer and Vishny, 1997; Kyle and Xiong, 2001; Gromb and Vayanos, 2002;

Pontiff, 2006; Mitchell, Pedersen and Pulvino, 2007; Cao and Han, 2016). Consequently,

market efficiency declines and prices move away from fundamentals.

We are not the first to infer the extent of financial frictions from such price discrepancies. Hu,

Pan and Wang (2013) construct their noise measure from deviations between U.S. treasury
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yields and the respective yield curves. Similar ideas have been applied to differences between

theoretical and actual forward exchange rates (Pasquariello, 2014; Klingler, 2016), index and

equity variance risk premia (Barras and Malkhozov, 2016), and pricing discrepancies of ETFs

and their underlying components (Chacko, Das and Fan, 2016), for example. Concerning

option markets, several studies analyze violations of the put-call parity and find connections

to short-sale constraints (Ofek, Richardson and Whitelaw, 2004) and liquidity (Kamara and

Miller, 1995). Golez, Jackwerth and Slavutskaya (2017) propose a funding liquidity measure

that is also based on put-call parity relations. These studies rely on perfectly matching

put-call pairs and usually depend on restrictive assumptions on transaction costs or market

maker positions. In contrast, we construct our measure of volatility noise from all given

options without further assumptions, thus taking advantage of the full information available.

We contribute naturally to the literature on asset pricing implications of implied volatility

characteristics. Innovations in the level of volatility surfaces predict returns (Dennis, Mayhew

and Stivers, 2006; Banerjee, Doran and Peterson, 2007; An et al., 2014), and so does the smile

(Xing, Zhang and Zhao, 2010; Yan, 2011) and term-structure of implied volatility (Vasquez,

2015). There is also a growing strand of literature on the predictability of volatility spreads

(see, for example, Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010; Doran, Fodor

and Jiang, 2013). Fournier and Jacobs (2017) relate the variance risk premium to financial

constraints, Duan and Wei (2009) find a relation between the systematic risk of a stock and

the level and slope of its associated implied volatility surface. Recently, Schlag, Thimme

and Weber (2017) introduce the concept of an implied volatility duration and establish a

connection to the early resolution premium. So there are many studies on asset pricing

implications of implied volatilities, but we are, to the best of our knowledge, the first to

analyze the fitting errors of volatility surfaces, establishing a link to limits of arbitrage.
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Finally, as we find a risk premium on volatility noise in the cross-section of fund returns, we

contribute as well to the literature on liquidity risk in managed portfolios (Billio, Getmansky

and Pelizzon, 2010; Sadka, 2010; Cao et al., 2013; Dong, Feng and Sadka, 2013). While this

literature focuses predominantly on market liquidity, volatility noise measures general limits

of arbitrage, including the effects of funding liquidity and idiosyncratic volatility, for example.

The rest of this paper is structured as follows. In Section 2, we describe the option data

and analyze the goodness of fit between implied volatilities and the corresponding smoothed

volatility surface. Section 3 covers the aggregation of individual fitting errors to market-

wide volatility noise and the time-series properties of this measure. Further, we analyze

pricing implications of volatility noise risk for mutual fund returns. Section 4 highlights the

importance of the chosen aggregation procedure and confirms the robustness of our results,

Section 5 concludes the paper.

2 Fitting Errors of Implied Volatilities

2.1 Option data

Our main data source is the OptionMetrics Ivy database, which covers the entire U.S. listed

equity and index option market. The sample period begins in January 1996 and ends in

April 2016. In addition to daily option trading information and closing bid and ask prices,

this database contains implied volatilities derived from a binomial tree model (following Cox,

Ross and Rubinstein, 1979). Even more, OptionMetrics provides smoothed volatility surfaces

for each underlying stock and day, as long as there are enough historical option prices for a

reliable estimation. For a hypothetical option j, the corresponding point σ̄j on the volatility
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surface is defined as a weighted sum over the actually observed volatilities σ1, . . . , σN from

all options written on the underlying stock:

σ̄j =
∑

i Φ(i, j) νi σi∑
i Φ(i, j) νi

. (1)

The weights depend on a distance function Φ, which takes larger values when options i and j

are more similar with respect to time to maturity, moneyness, and option type (i.e., call or put).

Importantly, the weight of an implied volatility σi is also proportional to the corresponding

option vega νi, which quantifies the sensitivity of option prices to volatility. If vega is small,

large changes in implied volatilities result in small price changes. By implication, small

measurement errors in prices translate to large errors in implied volatilities.2 To counteract

this effect, such implied volatilities receive a smaller weight. For more technical details on

the derivation of the volatility surface, see Appendix B.

In our main study, we focus on standard equity options, but we also analyze volatility fitting

errors of index options as a robustness analysis in Section 4. We exclude options with less

than 30 days and more than a year to maturity and restrict the absolute value of options’

deltas between 0.2 and 0.8, as the given volatility surface does only cover this region.3

[Table 1 about here.]

Summary statistics on our sample are shown in Table 1. On average, the sample contains

3 260 stocks per year with 24 options per stock-day. This amounts to about 16 million

different option series per year. Overall, our sample contains more than 340 million daily
2See Hentschel (2003) for a formal analysis on the impact of measurement errors on the estimation of

implied volatilities.
3The surface actually covers options with up to 730 days to maturity, but given the illiquidity of these

long-term options, we only consider times to maturity up to a year.
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option observations.

2.2 The goodness of fit of the volatility surface

To compare observed implied volatilities with their counterparts from the smoothed volatility

surface, we need a fitted volatility as a reference point for each available option. OptionMetrics’

volatility surface is given on 130 equally-spaced grid points spanning expirations between 30

and 730 calendar days, and deltas between 0.20 and 0.80 (negative deltas for puts), separately

for calls and puts, on a daily basis for each underlying. We define the reference volatility of a

given option as the estimate from a linear interpolation between the four nearest grid points

in the moneyness-expiration dimensions.4 In principle, we could calculate the exact smoothed

values using Eq. (1) for each observed option instead, but this would be computationally more

intensive. Since the given grid points of the volatility surface are narrow, the interpolation

has only a negligible impact on the resulting error metrics.

To get an intuition about the interpolation procedure, we visualize the calculation for an

exemplary stock-day in the following.5 Fig. 1 shows all observed implied volatilities considered

in this example.

[Figure 1 about here.]

The top panel shows call options, the bottom one put options. As result of the fixed issuing

schedule of the standard listed options, the observed volatilities lie on a rather uniform grid

and we only have four different times to maturity.
4 OptionMetrics uses a similar approach to calculate implied volatilities for the pricing of standardized

options.
5 The shown implied volatilities belong to options written on Teladoc, Inc. as of January 29, 2016.
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[Figure 2 about here.]

Fig. 2 visualizes the calculation of the volatility fitting errors for the subsample of put options

with 77 days to maturity (as indicated by blue dots in Fig. 1). The dotted line shows the true,

smoothed volatility surface, which we have calculated on our own using Eq. (1). The solid

line results from the linear interpolation between the grid points provided by OptionMetrics,

which in turn are drawn as black squares. In our actual calculation, we use a two-dimensional

interpolation, while Fig. 2 only shows an interpolation along the moneyness dimension for

illustrative purposes. In any case, the deviation between the true volatility surface and

the linearly interpolated surface is indeed very small, which we see as justification for the

chosen approximation. Finally, the option-specific fitting error is simply given by the distance

between the observed volatilities and the linearized surface, as illustrated by the red bars.

We report average volatility fitting error per moneyness-maturity category in Panel A of

Table 2. The fitting errors are highest for short maturities, and in particular for out-of-the-

money call and in-the-money put options. On the other hand, the fit is best for at-the-money

options. The patterns in average open interest and trading volume are quite different, as

shown in Panel B and Panel C, respectively. Open interest is both concentrated at short

and long maturities, which applies also in some extent to trading volume. In addition, both

variables are decreasing in moneyness for both call and put options. So there seems to be

no direct link between trading activity and volatility fitting errors. On the other hand, we

do observe such a connection to the number of options, as shown in Panel D. We observe

more options for short maturities, relatively few of them are at-the-money. This highlights a

feature of the smoothed volatility surface: If there are only few options with similar strike

and maturity, the surface is dominated by these options and so the fit is better for the

corresponding implied volatilities.
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[Table 2 about here.]

In addition to these results on time-series averages, Fig. 3 shows the shape of fitting errors

on several exemplary dates. On each of these dates, we group all available options by their

call-equivalent delta (delta for calls, one plus delta for puts) and calculate quantiles of the

fitting errors across all underlying stocks. The top left panel shows the pattern on January 3,

2006, an arbitrarily chosen day during normal times. The corresponding fitting errors are

quite low and there is no distinctive pattern in the moneyness dimension. In contrast, the top

right panel corresponds to a day during the financial crisis, where the fitting errors are very

large in comparison to the ones in normal times. It appears that the implied volatilities of

out-of-the-money call options (and in-the-money put options) are particularly poorly fitted,

confirming the results given in Table 2. Finally, the bottom panels show that the distribution

can rapidly change from one day to another: the bottom right panel corresponds to the

2010 flash crash, whereas the one on the bottom left shows data from the preceding day.

Apparently, the large price movements during the crash resulted in higher uncertainty and

mispricing in option markets.

[Figure 3 about here.]

These examples are already indicative for a close link between fitting errors and limits of

arbitrage, or economic conditions in general. We investigate this connection more closely on

an aggregate level in Section 3. But first, we analyze the cross-sectional relation between

fitting errors on the stock-level and stock characteristics.
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2.3 Volatility fitting errors on the stock-level

We quantify the overall fitting error for stock i on day t with the root-mean-square error

based on all available options written on this stock:

error i,t =
√√√√ 1
ni,t

ni,t∑
j=1

(
σj,t − σ̂j,t

)2
, (2)

where σj,t is the actually observed implied volatility of option j, σ̂j,t is the corresponding

fitted value from the interpolated volatility surface, and ni,t is the number of options written

on stock i on day t.

This metric summarizes how well the implied volatilities of all options written on a given stock

can be described by the smoothed volatility surface. We hypothesize that the goodness of

this fit strongly depends on limits of arbitrage, as large deviations between implied volatilities

and the volatility surface is indicative for “very good deals”, if not downright arbitrage

opportunities. In the cross-section, for some stocks there might be more impediments to

arbitrage activities, for example due to illiquidity or higher idiosyncratic volatility (cf. Shleifer

and Vishny, 1997). To shed light on this relation, we form monthly decile stock portfolios by

the average daily stock-level fitting error over the preceding month. As shown in Table 3,

stocks with higher fitting errors belong to smaller firms and are less liquid: Trading volume is

decreasing, relative bid-ask spreads and Amihud (2002) illiquidity are increasing in the fitting

error portfolio rank. The same is true for the idiosyncratic volatility, which we calculate as the

standard deviation of the residuals from the Fama and French (1993) factor model estimated

on daily stock returns over the previous month. This definition of idiosyncratic volatility

follows Ang et al. (2006). As discussed by Shleifer and Vishny (1997), both illiquidity and
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idiosyncratic volatility are proxies for limits of arbitrage, so these results are in line with our

hypotheses.

[Table 3 about here.]

The bottom part of Table 3 shows average option characteristics written on the stocks. Like

for the stock characteristics, we find a positive connection between fitting errors and option

illiquidity, as indicated by decreasing open interest and trading volume, and increasing option

bid-ask spread relative to the option price.

3 Volatility Noise and Limits of Arbitrage

3.1 Aggregated fitting errors

The stock-level volatility fitting errors, as given by Eq. (2), tell us how well the actually

observed implied volatilities can be described by the smoothed volatility surface. As part

of the deviations from the fitted values may represent arbitrage opportunities, an aggregate

measure of fitting errors may give an indication about market-wide limits of arbitrage.

We construct our measure of volatility noise simply as the average over all stock-individual

fitting errors, weighted by the value of open interest. Using value weighting, we focus on

stocks with more liquid options, which potentially puts less emphasis on measurement errors

and unsystematic fitting errors. For the same reason, we exclude the daily 5% lowest and

highest stock-level fitting errors from averaging. The chosen weighting scheme and filter

criteria yield a less volatile measure, but our results do not depend on these choices.6

6 See Section 4 for a robustness analysis on these alternative specifications.
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[Figure 4 about here.]

Fig. 4 shows the resulting time series of volatility noise along with several important macro-

economic events. Strikingly, our measure peaks during the NBER recession periods and

large-scale episodes like the European debt crisis, and matches smaller events of market

distress as well. From 2010 onwards, the measure exhibits a strong upward trend, which

we attribute to increasing arbitrage impediments due to progressing regulatory constraints.

One example of such regulatory changes is the Dodd-Frank act, which became effective on

July 21, 2010.7 In addition, in 2011 the Fed announced the implementation of more stringent

rules on capital requirements following Basel III (cf. Wyatt, 2011). Furthermore, according

to Banerji (2017), at least 6 major option market makers stopped their trading activity since

2012, which could also explain part of the increasing trend in option mispricing. In line

with Fig. 4, Table 4 shows that the average level of volatility noise of 1.181% between 2012

and 2016 is more than twice as high as the level in the periods before the financial crisis in

2008. Between 2004 and 2007, volatility noise reaches its lowest average level of 0.347%. A

similar pattern can be observed for the standard deviation: Volatility noise is more volatile

during periods of market distress. Finally, the last column shows that volatility noise is quite

persistent, with an overall first-order autocorrelation coefficients of 0.913.

[Table 4 about here.]

The descriptive analysis of the time-series of volatility noise already points to a potential

connection to the overall market state. To investigate this link, we present correlations of

monthly changes of volatility noise and several well-known economic state variables in Table 5,
7 In the same spirit, Cumming, Dai and Johan (2017) show that the Dodd-Frank act has a strong impact

on hedge fund performance, risk, and fund flows.
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Panel A. The first variable is the noise measure of Hu, Pan and Wang (2013), which we call

treasury noise in the following to avoid misconceptions.8 Treasury noise is constructed as

root-mean-square error of treasury yield curves, and so it is both by construction and by

intuition quite similar to volatility noise. A closely related measure for limits of arbitrage

can be constructed in the foreign exchange market as well, exploiting the well-known covered

interest rate parity. More precisely, Pasquariello (2014) and Klingler (2016) propose a

measure for CIP deviations, which is given by the absolute log-difference between CIP-implied

theoretical and actually observed forward exchange rates for several currencies on different

time horizons.9 As it reflects mispricings in the foreign exchange market, just like volatility

and treasury noise quantify price deviations in the options and treasury market, the CIP

measure is a natural additional reference point for our analysis. For consistency, we call it

FX noise in the following, although it differs in some details of construction from the other

two noise measures. In any case, given the conceptual similarities between these measures,

we expect to find a close connection between them, and indeed, we find high correlations

between 21 and 33 percent between monthly changes in these variables.

Volatility noise is positively related to market and funding liquidity, as measured by average

relative bid-ask spreads, Amihud (2002) illiquidity, and the TED spread. It is also sensitive to

increases in expected volatility and market downturns, as indicated by the large correlations

of 0.40 to changes in the VIX and −0.29 to the market return. Correlations to interest

rates and the on-the-run premium have intuitive signs, but are only small in magnitude.

Remarkably, the correlation patterns between all three noise measures and the remaining

state variables are very similar, both in terms of sign and magnitude. This indicates that
8 The time-series of treasury noise between 1987 and 2014 may be obtained from Jun Pan’s homepage,

http://www.mit.edu/~junpan/. We thank Stefan Fiesel for providing an augmented time-series that covers
the time span until December 2016. See Fiesel, Uhrig-Homburg and Brunzel (2017) for further details.

9 We thank Sven Klingler for providing us the corresponding time series of the CIP measure.
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all three noise measures quantify similar frictions and one may ask whether and how these

measures differ.

[Table 5 about here.]

As a first answer to this question, we also analyze correlations for weekly changes in Table 5,

Panel B. The correlations between volatility noise and both the market return and changes

in the VIX are still quite high, especially in comparison to the corresponding correlations

between these variables and the other noise measures. On the other hand, the connection

between volatility noise and the state variables coming from the fixed-income market are

much weaker. The most striking difference to monthly correlations is the very low correlation

between volatility noise and treasury noise of only 2 percent, whereas the link between

volatility noise and FX noise remains unchanged. These results lead us to expect that

volatility noise contains unique information beyond treasury noise, particularly for equity

markets. On the other hand, there is an undisputedly strong connection between volatility

noise and FX noise.

To shed more light on the intertemporal associations between the three noise measures, we

consider vector autoregression (VAR) models on both a monthly and weekly frequency. First,

we apply a logarithmic transformation on all three time series to reduce the impact of the large

peaks during the crisis periods and to mitigate heteroskedasticity. In addition, the VAR model

in logarithms results in a much better fit in terms of root-mean-square errors and coefficients

of determination. The optimal lag length for the monthly and weekly frequency according to

Akaike’s information criterion (AIC) is 4 months and 15 weeks, respectively.10 Table 6 shows
10 The Bayesian information criterion (BIC) suggests less lags, but the corresponding VAR models are not

well-specified, as there is significant serial correlation in the regression residuals.
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the results from pairwise Granger causality tests between the three noise measures.11 On

both frequencies, we find that only volatility noise significantly Granger-causes the other two

variables. Whereas FX noise also Granger-causes volatility noise, we find no causal impact

on treasury noise, which in turn does not Granger-cause any of the other noise measures. In

combination with the previous results on correlations, we conclude that both volatility and

FX noise capture new, complementary information beyond treasury noise.

[Table 6 about here.]

3.2 Pricing of volatility noise risk in equity mutual fund returns

As shown in the previous analyses, volatility noise exhibits a close link to the economic state,

peaking in periods of limited arbitrage capital and illiquidity, with a particularly close relation

to equity-related state variables. For this reason, we expect that volatility noise carries a risk

premium in the cross-section of equity mutual funds.

Managed portfolios are a particularly well suited asset class for this research question, as fund

managers are willing to accept higher risks to maximize their salary (cf. Massa and Patgiri,

2009). Further, Dong, Feng and Sadka (2013) argue that informed fund managers’ ability to

outperform strongly depends on market liquidity, which results in additional liquidity risk

exposure. Consequently, fund returns may exhibit a much stronger link to frictions, and

consequently volatility noise risk, than the underlying stock returns.

In the following, we focus on mutual funds, as these funds have much stricter reporting and

transparency rules than hedge funds. For example, while hedge funds may choose to use
11 All considered time series are stationary, with the sole exception of the monthly time series of log-treasury

noise, which is integrated of order one. We rely on the procedure proposed by Toda and Yamamoto (1995),
which enables us to test for Granger-causality between integrated processes.
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redemption gates during liquidity crises (cf. Teo, 2011), mutual funds have no such possibility

to prevent costly capital withdraws. Consequently, liquidity risk exposures have a much more

pronounced and immediate impact on mutual fund returns by comparison.

Our fund sample comes from the Morningstar mutual fund database. We select all funds

with an investment style focused on US equities, as indicated by the Morningstar category,

excluding funds of funds and index funds. In line with Pástor, Stambaugh and Taylor (2015),

we remove funds younger than 3 years or less than $15 million assets under management

to address the incubation bias in the early phase of a fund’s lifespan. For more details on

the sample construction, see Appendix C. The final sample covers the the period between

February 1996 and April 2016, with 1586 funds per month on average.

As the time series of volatility noise is highly autocorrelated, we extract volatility noise shocks

with a time-series model. Specifically, we fit a second-order autoregressive model without

intercept to monthly changes in volatility noise:

∆vnt = θ1 ·∆vnt−1 + θ2 ·∆vnt−2 + εt (3)

The volatility noise shock is then defined as the negative residual from this regression:

νt ≡ −εt. We multiply the residuals with negative one to simplify the interpretation: Just like

in the case of a standard risk factor, a positive shock is a desirable outcome. For comparison,

we analyze shocks to treasury and FX noise as well, which are simply defined as the negative

first difference of the respective time series. All of the chosen models are optimal according

to both AIC and BIC among all ARIMA model with or without intercept.

We form monthly equally-weighted decile portfolios on ex-ante noise betas, which we estimate
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from rolling regressions using a window width of 36 months:

ri
t = α + βN

i νt + βMKT
i MKT t + βSMB

i SMBt + βHML
i HMLt + εi,t, (4)

where ri
t is excess returns of fund i and νt is the shock in the respective noise measure. In

addition, we control for the Fama-French factors MKT t, SMBt, and HMLt.12

[Table 7 about here.]

Table 7 shows the results from the portfolio sort on volatility noise betas. First of all, the

ex-ante betas estimated from the rolling window regression are quite symmetric around zero,

covering a range from −3.72 to 4.06. The ex-post noise betas, which are estimated from

regressions of the full time-series of portfolio returns, increase quite monotonously in the

portfolio rank and are throughout positive. So while ex-ante betas appear to be a good

estimator for ex-post betas when it comes to the relative size, their levels differ. The fact that

all portfolio noise betas are positive indicates that volatility noise shocks indeed constitute

an important source of risk that cannot be easily avoided. Portfolio excess returns and

alphas from standard factor models are predominantly increasing in portfolio rank, with a

statistically significant long-short return of 0.30 percent per month, which corresponds to

an also economically significant premium of 3.60% per year. In addition, we find significant

alphas between 0.25 and 0.28 percent.

Table 7 also shows further characteristics of the decile portfolios. While all portfolios have a

market beta close to one, betas with respect to the HML and SMB factor exhibit a distinct

hump and u-shape, respectively. This finding highlights the importance of the chosen risk
12Fama-French research factors are obtained from Kenneth French’s data library, http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html.
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factors as control variables, as the effect of volatility noise may otherwise be hidden due to

the unobserved variation in the corresponding factor exposures. Finally, as shown in the

last part of Table 7, neither of the funds’ age, assets under management, expense ratio, and

turnover ratio does vary systematically between the portfolios, which shows that the found

premia are not driven by differences in fund characteristics.

[Table 8 about here.]

To conclude this analysis, we run Fama-MacBeth regression of individual fund returns on

ex-post portfolio betas, following Fama and French (1992). That is, in a given month, we

assign each fund the ex-post beta of the portfolio to which the fund is allocated to in that

month. Then we regress next month’s fund excess returns on these portfolio betas. We

report time-series average of the resulting regression coefficients in Table 8. The first column

correspond to the already discussed portfolio sort on volatility noise betas. In the first

specification, we regress fund returns on the betas corresponding to volatility noise shocks

and the Fama-French factors. Here we find a significant coefficient of 0.19 for volatility noise.

Coefficients for the other factors are all positive, as expected, but none of them is statistically

significant. The second specification shows that these findings are robust to the inclusion of

the funds’ size and age, the expense ratio and the turnover ratio as control variables.

For comparison, we carry out the same analyses for treasury and FX noise, as well. In

the corresponding portfolio sorts, we find no significant long-short returns or alphas (see

Table A1 and Table A2 in the appendix). Columns (3) and (4) of Table 8 show the results

from Fama-MacBeth regressions corresponding to treasury noise, results for FX noise are

shown in columns (5) and (6). In line with the portfolio sorts, we do not find any significant

premia on these noise measures.
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These analyses show that volatility noise captures indeed unique information beyond the

shocks in treasury and FX noise, as already conjectured in the previous section. As volatility

noise is constructed from equity options, and given the significant premium in equity mutual

fund returns, we conclude that volatility noise is, in particular, tightly linked to frictions in

the equity market, for which investors demand a substantial premium.

4 The Importance and Robustness of Aggregation

We define volatility noise as the value-weighted average of stock-specific fitting errors. As

an alternative specification, one could also switch the order of aggregation, that is, analyze

the fitting errors of options written on a broad value-weighted market index. Following this

idea, we define index noise as the root-mean-square error based on all options written on the

S&P 500 index.13 In the first line of Table 9, we show summary statistics on this measure.

[Table 9 about here.]

The mean level of index noise is 0.29%, which is less than a half of the average level of

volatility noise from stock options, which is shown in the second line. The standard deviation

is 0.13%, which is about a third of the one of stock noise. These findings are not particularly

surprising as index options are much more liquid than the average stock option. The last

two columns show that the correlations with treasury noise and volatility noise are very low.

As shown in Table 10, correlations between index noise and the considered economic state

variables are low as well. Many correlations, like with the TED spread or the two liquidity

measures, have even an unreasonable sign.
13 As in our baseline specification, we only consider options with an absolute value of delta between 0.2

and 0.8, and maturities from 30 days to one year.
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[Table 10 about here.]

Finally, we form fund portfolios on index noise, using the same approach as for the baseline

volatility noise (see Section 3.2). The first column of Table 11 shows average returns and

alphas of the resulting long-short portfolio. None of them is statistically different from zero,

the three-factor alpha is even weakly negative. On the one hand, these analyses show that

there are considerable fitting errors for individual underlying assets, even if the associated

options are outstandingly liquid, as it is the case for the considered index options. On the

other hand, although returns of the S&P 500 are basically by definition linked to systematic

risk, the corresponding fitting errors appear to be predominantly idiosyncratic, as they neither

exhibit high correlations with economic state variables nor carry a risk premium in expected

returns. This result highlights the suitability of the cross-section of options to derive a

measure of systematic limits to arbitrage. Given the multitude of options, we are able to

quantify fitting errors at the stock level, which may depend on idiosyncratic influences, as

we have seen even for the S&P 500, but share a common exposure to market-wide frictions.

Consequently, by forming an average over the stock-specific fitting errors, we effectively cancel

the idiosyncratic effects and get a meaningful measure of the systematic limits of arbitrage.

[Table 11 about here.]

Thus, the aggregation of individual fitting errors is a crucial component of our measure, but

the specific way of aggregation is not important. In our baseline specification, we remove the

5% lowest and highest fitting errors, and use value weighting to aggregate stock-individual

errors to market-wide volatility noise. We chose this specification to minimize the influence

of outliers and reporting errors, but the general properties of our measure do not depend

on these details. In the first row of Fig. 5, we show time-series plots of index noise and
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the baseline stock volatility noise, the second row shows stock volatility noise measures

resulting from an aggregation with equal weighting and without trimming of extreme values,

respectively. Consistent with our previous analysis, the time-series of index noise stands out

against the aggregated stock volatility noise measures, which in turn are all quite similar.

The corresponding descriptive statistics in Table 9 and long-short portfolio characteristics in

Table 11 lead to the conclusion that the trimming of extreme values significantly improves

the informational content of volatility noise, whereas the chosen weighting scheme has a

weaker effect. Overall, all three specifications exhibit a clear link to limits of arbitrage and

are consistently priced in the cross-section of equity mutual fund returns.

[Figure 5 about here.]

So far, all volatility noise measures are derived from all available options. Then again,

the literature14 documents differences in the demand for call and put options, resulting in

option-type specific pricing effects. Mapping this finding on our setting, volatility noise solely

derived from call and put options, respectively, may measure distinct aspects of limits of

arbitrage.

Based on the associated risk premia, as shown in Table 11, these volatility noise measures

appear to be quite similar. For both measures we find significant five-factor alphas of

similar size, the long-short portfolios corresponding to call volatility noise also earns a weakly

significant average excess return. However, the corresponding time-series plots in Fig. 5 and

the descriptive statistics in Table 9 uncover several differences between these measures. The

mean, volatility, and quantiles of put volatility noise are all higher than for our baseline

specification, which in turn lie above the values for call volatility noise. Also, the correlations
14See for example Bondarenko (2014), among others.
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to treasury noise and to the baseline volatility noise are clearly higher for the put-based

measure. A more detailed analysis whether and to what extent fitting errors in call and

put options cover different aspects of limits of arbitrage is an interesting question for future

research.

5 Conclusion

In this paper, we analyze deviations between equity option implied volatilities and the

corresponding fitted values from a smoothed volatility surface. Such deviations may be

the result from mispricing and therefore, they should contain information on the limits of

arbitrage. Using root-mean-square errors for aggregation, we find that fitting errors on the

stock-level are associated with smaller firm size, lower liquidity and higher idiosyncratic

risk, underpinning the link to limits of arbitrage. Consequently, we propose a market-wide

measure for limits of arbitrage by means of a value-weighed average over the stock-individual

mispricings. This measure of volatility noise co-moves with the business cycle, peaks during

phases of market distress, and is tightly connected to economic state variables.

Finally, asset pricing tests on the time-series of volatility noise show that it constitutes a

priced risk factor in monthly returns of equity mutual funds. In particular, these analyses

imply that volatility noise is a unique source of risk beyond treasure noise, FX noise, and

standard equity risk factors.
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B Derivation of the Volatility Surface

OptionMetrics’ smoothed volatility surface is derived from a kernel regression. That is, each
point on the surface is given by a weighted sum of the observed implied volatilities. The
weights are defined as the product of the options’ vegas and the following kernel function:

Φ(i, j) = 1√
2π

exp

−
x2

ij

0.1 +
y2

ij

0.01 +
z2

ij

0.002


 , (5)

where
xij = log(Ti/Tj),
yij = ∆i −∆j,

zij =

1, option i and j are both calls or puts,
0, option i and j are not of the same option type.

(6)

Thus, option similarity is quantified along the dimensions time to maturity, moneyness (given
by delta), and option type.
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C Details on the mutual fund sample

To construct the sample of mutual funds, we first select all US-listed mutual funds from the
Morningstar database with a focus on equity investments. More precisely, we only keep funds
belonging to one of the following Morningstar categories:

• US Fund Small/Mid-Cap/Large Blend

• US Fund Small/Mid-Cap/Large Value

• US Fund Small/Mid-Cap/Large Growth

• US Fund Allocation–85%+ Equity

• US Fund Preferred Stock

• US Fund Bear Market

• US Fund Market Neutral

In addition, we exclude funds of funds and index funds as indicated by the corresponding
flags of the database, and funds with the word “index” in their name, in line with Pástor,
Stambaugh and Taylor (2015). Finally, we exclude all monthly fund observations where the
fund’s age ist below 3 years or the assets under management are less than 15 million USD.
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Figures

Figure 1: Exemplary implied volatilities

This figure shows observed implied volatilities of all options written on Teladoc, Inc. as of January 29, 2016.
The grey shaded area indicates the delta-maturity range that is covered by the smoothed volatility surface
provided by OptionMetrics. The blue dots correspond to the put volatilities shown in Fig. 2.
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Figure 2: Exemplary construction of volatility fitting errors

This figure visualizes the construction of volatility fitting errors for a single underlying stock. The blue dots
depict the implied volatilities of all put options written on Teladoc, Inc. with 77 days to maturity, as of
January 29, 2016. The black dotted line shows the true volatility surface resulting from a kernel regression of
the observed volatilities. In our dataset, this volatility surface is given on a discrete grid, as indicated by the
black squares. The black solid line shows the result from a linear interpolation between these grid points,
which we use to calculate the fitting errors.
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Figure 3: Examples of volatility fitting errors

This figure shows quantiles of fitting errors at different dates. On each date, we group all available options on
all stocks by their respective call-equivalent delta and determine several quantiles of the deviation between
the observed implied volatility and the corresponding estimate from the volatility surface. The bottom and
top dashed lines show the 10% and 90% quantile, respectively. The shaded area covers the range between the
25% and 75% quantile, while the solid line indicates the median.
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Figure 4: Time series of volatility noise

This figure visualizes volatility noise over time. The grey bars indicate NBER recessions, vertical lines show
important economic events, as detailed below.
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Figure 5: Time series of alternative volatility noise measures

This figure visualizes the time-series of index noise, as shown on the top left, and several alternative
specifications of (stock) volatility noise. The top right panel replicates the time-series plot of volatility
noise shown in Fig. 4 for comparison. The second rows shows noise measures with equal weighting of the
stock-individual fitting errors on the left, and the result from an aggregation without trimming of the 5%
lowest and highest fitting errors on the right. The noise measures in the third row are solely derived from call
and put options, respectively.
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Tables

Table 1: Summary statistics

This table shows summary statistics on the size of the option sample after matching with the volatility surface
data. We report the number of unique stocks, stock-days, and options per year, as well as the number of
options per stock-day, where we only consider options with a time to maturity of less than one year and
a call-equivalent delta between 0.2 and 0.8. For each of these quantities, we report the mean, standard
deviation, and the 5%, 50% (median), and 95% quantile.

Mean Std. dev. 5% Median 95%

Stocks per year 3 260 723 2 382 3 110 4 343
Stock-days per year 688 620 182 363 460 413 646 852 1 009 398
Options per year 16 320 387 9 061 073 7 971 290 13 337 277 33 917 132
Options per stock-day 24 30 6 16 70
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Table 2: Option characteristics across moneyness and maturity

This table shows equally-weighted averages of fitting errors (in basis points), open interest, and daily trading
volume as well as the number of options per moneyness-maturity category. Options are classified as out-of-
the-money, at-the-money, or in-the-money if the absolute value of the options’ delta lies between 0.2 and 0.4,
0.4 and 0.6, or 0.6 and 0.8, respectively.

Panel A: Average fitting error (annual volatility in bps)

Call options Put options

Months to maturity OTM ATM ITM OTM ATM ITM

1-3 229.96 77.51 115.03 107.11 81.11 250.90
4-6 103.64 44.51 62.79 57.41 50.16 129.56
7-9 86.11 48.03 63.72 58.03 51.13 104.36
10-12 69.89 38.36 51.71 49.88 53.93 125.54

Panel B: Average open interest

Call options Put options

Months to maturity OTM ATM ITM OTM ATM ITM

1-3 1 187.89 1 135.82 753.40 1 040.17 796.68 471.41
4-6 890.83 813.26 501.00 728.94 530.80 307.42
7-9 764.62 629.09 424.36 599.58 400.40 253.38
10-12 2 754.76 2 739.52 1 826.30 2 363.77 1 694.73 959.48

Panel C: Average trading volume

Call options Put options

Months to maturity OTM ATM ITM OTM ATM ITM

1-3 100.26 111.99 40.46 90.08 73.09 19.73
4-6 34.65 37.92 13.31 27.25 18.78 5.01
7-9 22.87 22.78 8.75 17.79 11.45 3.29
10-12 55.97 64.57 26.69 48.96 29.99 7.46

Panel D: Number of options (millions)

Call options Put options

Months to maturity OTM ATM ITM OTM ATM ITM

1-3 23.70 20.46 24.12 24.98 21.01 24.40
4-6 20.03 19.57 22.28 23.04 20.20 20.82
7-9 9.91 11.22 12.52 12.90 11.62 10.32
10-12 1.57 1.48 1.69 1.77 1.52 1.62
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Table 4: Summary statistics on volatility noise

This table shows the mean, standard deviation, the 5%, 50% (median) and 95% quantile, and the first-order
autocorrelation of the time series of volatility noise for different subsamples. The mean, standard deviation,
and quantiles are given in percent.

Sample Mean Std 5% Median 95% AC

Overall 0.683 0.441 0.292 0.544 1.619 0.913

1996-1999 0.524 0.126 0.394 0.494 0.748 0.909
2000-2003 0.526 0.176 0.313 0.491 0.855 0.911
2004-2007 0.347 0.075 0.259 0.330 0.483 0.808
2008-2011 0.796 0.472 0.420 0.648 1.666 0.793
2012-2016 1.181 0.498 0.648 1.023 2.136 0.874

Expansions 0.669 0.426 0.289 0.534 1.577 0.923
Recessions 0.791 0.529 0.425 0.605 2.020 0.857
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Table 5: Pairwise correlations between the noise measures and economic state variables

This table shows pairwise correlations (in percent) between changes in volatility noise, treasury noise, FX noise,
and other economic state variables. The TED spread is the spread between the 3-month LIBOR rate and the
T-Bill rate, which is the yield on 3-month US treasuries. Repo rate is the average rate on a 3-month general
collateral repurchasement agreement. OtR premium is the on-the-run premium for 10-year bonds. Market
return is the CRSP value-weighted market return, VIX is the CBOE Volatility Index. Finally, we measure
aggregate market liquidity using value-weighted averages of the stock-individual relative bid-ask spreads and
the Amihud (2002) measure.

Panel A: Monthly changes

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Volatility noise 33 23 14 −06 −08 06 −29 40 35 33
(2) Treasury noise 21 18 −25 −25 09 −33 36 05 29
(3) FX noise 59 −21 −04 00 −17 36 18 25

(4) TED spread −46 04 −02 −10 20 17 21
(5) T-Bill rate 72 19 18 −13 −01 −13
(6) Repo rate 07 08 −10 03 −06
(7) OtR premium 26 −18 02 −04
(8) Market return −73 −06 −41
(9) VIX 12 39

(10) Avg. bid-ask spread 06
(11) Amihud illiquidity

Panel B: Weekly changes

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Volatility noise 02 23 10 −06 −02 −11 −22 25 08 01
(2) Treasury noise 07 15 −15 −14 03 −13 12 03 −04
(3) FX noise 15 −03 −01 −02 −07 10 17 −04

(4) TED spread −71 03 −00 −07 13 05 −01
(5) T-Bill rate 35 16 10 −11 01 −04
(6) Repo rate 05 05 −04 06 01
(7) OtR premium 25 −22 00 −03
(8) Market return −78 −21 −14
(9) VIX 18 08

(10) Avg. bid-ask spread 05
(11) Amihud illiquidity

42



Table 6: Granger causality tests between the noise measures

This table shows χ2-statistics and p-values of pairwise Granger causality tests. The underlying VAR models
incorporate the logarithm of volatility noise (VN), treasury noise (TN) and FX noise (FXN). Each entry
corresponds to a separate test with the null hypothesis that the row variable does not Granger-cause the
column variable. Panel A shows result for the monthly frequency, Panel B corresponds to the weekly frequency.

Panel A: Monthly frequency

VN TN FXN

VN 9.70∗∗ 9.60∗∗

(0.046) (0.048)

TN 3.54 4.22
(0.472) (0.378)

FXN 17.77∗∗∗ 6.89
(0.001) (0.142)

Panel B: Weekly frequency

VN TN FXN

VN 47.71∗∗∗ 26.98∗∗

(0.000) (0.029)

TN 10.58 20.26
(0.782) (0.162)

FXN 39.01∗∗∗ 12.67
(0.001) (0.628)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 8: Fama-MacBeth regressions of mutual fund returns

This table shows results from Fama-MacBeth regressions of monthly mutual fund excess returns on ex-post
portfolio betas and control variables. We control for the funds’ age (in months), size (given by the logarithm of
the assets under management), the expense ration and turnover ratio. The first two regressions correspond to
volatility noise, models (3) and (4) to treasury noise, and the last two columns show the results for FX noise.
We report time-series averages of the cross-sectional regression coefficients in percent, along with Newey and
West (1987) t-statistics.

Excess return

Volatility noise Treasury noise FX noise

(1) (2) (3) (4) (5) (6)

Intercept −0.88 0.10 −0.06 −0.07 0.81 1.41
(−0.7) (0.1) (−0.1) (−0.1) (1.0) (1.6)

Noise beta 0.19∗∗ 0.18∗∗∗ 0.06 −0.01 −0.04 0.07
(2.4) (2.7) (0.2) (−0.0) (−0.0) (0.1)

Market beta 1.10 0.80 0.54 1.19 −0.47 −0.46
(0.9) (0.7) (0.4) (1.1) (−0.5) (−0.5)

SMB beta 0.33 0.35 0.18 0.35 0.56 0.54∗

(0.6) (0.8) (0.3) (0.6) (1.6) (1.8)

HML beta 1.16 0.97 −0.31 0.16 0.06 0.02
(1.1) (1.0) (−0.3) (0.2) (0.1) (0.0)

Size −0.03∗ −0.03∗ −0.02∗∗

(−1.7) (−2.0) (−2.0)

Age 0.00 0.00 0.00
(−0.2) (−0.6) (−0.8)

Expense ratio −0.09∗ −0.08 −0.10∗∗

(−1.9) (−1.5) (−2.1)

Turnover ratio 0.00 0.00 0.00
(−0.2) (−0.2) (−0.3)

Adj. R2 0.04 0.08 0.05 0.09 0.06 0.09
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 9: Summary statistics on alternative specifications of volatility noise

This table shows the mean, standard deviation, the 5%, 50% (median) and 95% quantile, and the first-order
autocorrelation corresponding to alternative volatility noise specifications. In addition, the last two columns
show the correlation between monthly changes of the respective volatility noise measure and monthly changes
in treasury noise and FX noise, respectively. The first line corresponds to the baseline specification of volatility
noise, the second line shows results for volatility noise constructed from index options. In the remaining lines,
we change one aspect of the baseline specification at a time: the weighting scheme, trimming of extreme
fitting errors, and the subset of options (i.e., calls or puts) over which we form the root-mean-square error.
The mean, standard deviation, and quantiles are given in percent.

Specification Mean Std 5% Median 95% AC VN corr. TN corr. FXN corr.

Baseline 0.68 0.44 0.29 0.54 1.62 0.91 1.00 0.31 0.23
Index noise 0.29 0.13 0.15 0.27 0.48 0.59 0.13 0.00 0.04
Equally weighted 0.98 0.79 0.31 0.64 2.65 0.95 0.88 0.25 0.28
No trimming 0.92 0.55 0.38 0.76 2.03 0.93 0.51 0.11 0.20
Only calls 0.57 0.32 0.26 0.48 1.30 0.91 0.57 0.19 0.14
Only puts 0.70 0.48 0.30 0.55 1.64 0.84 0.93 0.29 0.22
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Table 10: Pairwise correlations between index noise and economic state variables

This table shows pairwise correlations (in percent) between monthly changes in index noise, the baseline
(stock) volatility noise, treasury noise and changes in other economic state variables as well as stock market
returns. The TED spread is the spread between the 3-month LIBOR rate and the T-Bill rate, which is the
yield on 3-month US treasuries. Repo rate is the average rate on a 3-month general collateral repurchasement
agreement. OtR premium is the on-the-run premium for 10-year bonds. Market return is the CRSP value-
weighted market return, VIX is the CBOE Volatility Index. Finally, we measure aggregate market liquidity
using value-weighted averages of the stock-individual relative bid-ask spreads and the Amihud (2002) measure.

Index noise Stock noise

Stock noise 21
Treasury noise 05 33
FX noise 05 23
TED spread −02 14
T-Bill rate 05 −06
Repo rate 06 −08
OtR premium −01 06
Market return −14 −29
VIX 18 40
Average bid-ask spread 16 35
Amihud illiquidity −08 33
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Table 11: Long-short portfolios based on alternative volatility noise specifications

This table shows monthly average excess returns and alphas from equity mutual fund long-short portfolios
formed on betas corresponding to different volatility noise specifications. The first two columns show results
for volatility noise derived from S&P 500 index options and the baseline specification based on stock options,
respectively. In the third specification, stock-individual fitting errors are equally weighted instead of value
weighting. In the fourth column, we show the results for a noise measure without the removal of the 5%
lowest and highest fitting errors. Specifications five and six result from the construction of volatility noise
solely from call and put options, respectively. Returns and alphas are given in monthly percent, Newey and
West (1987) t-statistics are shown in parentheses. Alphas are intercepts of regression of the monthly excess
returns on risk factors. Three-factor alphas are based on the Fama and French (1993) risk factors, four-factor
alphas include the additional momentum factor of Carhart (1997). The risk factors of Fama and French
(2015) give rise to the five-factor alpha.

Stock noise

Index noise Baseline Equ. weighted No trimming Only calls Only puts

Excess return −0.02 0.30∗∗ 0.41∗∗ 0.04 0.30∗ 0.33∗

(−0.1) (2.1) (2.5) (0.4) (1.8) (1.8)

Three-factor alpha 0.02 0.25∗ 0.35∗∗ 0.04 0.25 0.29∗

(0.2) (1.8) (2.2) (0.4) (1.6) (1.7)

Four-factor alpha 0.07 0.25∗ 0.35∗∗ 0.06 0.23 0.27∗

(0.8) (1.9) (2.4) (0.6) (1.6) (1.7)

Five-factor alpha −0.03 0.28∗ 0.35∗∗ −0.04 0.32∗ 0.38∗∗

(−0.3) (1.8) (2.0) (−0.4) (1.8) (2.0)
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

48


	Introduction
	Fitting Errors of Implied Volatilities
	Option data
	The goodness of fit of the volatility surface
	Volatility fitting errors on the stock-level

	Volatility Noise and Limits of Arbitrage
	Aggregated fitting errors
	Pricing of volatility noise risk in equity mutual fund returns

	The Importance and Robustness of Aggregation
	Conclusion
	Further Analyses
	Derivation of the Volatility Surface
	Details on the mutual fund sample

